Amorphous cores factory today: Amorphous cores are a versatile class of soft magnetic materials widely used in various industries. The transformer amorphous core possess a disordered atomic structure that lacks the crystalline organization found in traditional ferromagnetic materials. This unique property allows amorphous cores to exhibit exceptional magnetic characteristics such as low core loss and high saturation induction, rendering them highly desirable for numerous applications. The amorphous transformer core is suitable for use in electromagnetic components like inductors and chokes used across diverse fields ranging from aerospace and automotive industries to renewable energy systems. See even more details on amorphous transformer core.
Nanocrystalline magnetic core is a new type of soft magnetic material with high BS, high effective permeability, high DC bias stability, high temperature stability, wide frequency adaptability, low power consumption and low cost. It is applied to high-power, high-frequency, miniaturized and high conversion switching power transformer and choke. At present, the solar energy industry inverter, water energy, air energy, electric energy conversion and charging of hybrid vehicles have great market space and future, because the performance of nanocrystalline magnetic core is highly controllable.
However, at the same BM, the loss of Fe based amorphous alloy is smaller than that of 0.23mm thick 3% silicon steel. It is generally believed that the reason for low loss is the thin thickness and high resistivity of iron-based amorphous alloy strip. This is only one aspect. The main reason is that the iron-based amorphous alloy is amorphous, the atomic arrangement is random, there is no magnetocrystalline anisotropy caused by atomic directional arrangement, and there is no grain boundary causing local deformation and composition offset. Therefore, the energy barrier hindering domain wall motion and magnetic moment rotation is very small, with unprecedented soft magnetism, so it has high permeability, low coercivity and low loss.
As one of Transmart Industrial’s multiple product series, mumetal cores series enjoy a relatively high recognition in the market. Transmart Industrial provides diversified choices for customers. The mu-metal cores are available in a wide range of types and styles, in good quality and in reasonable price.Transmart Industrial effectively improves after-sales service by carrying out strict management. This ensures that every customer can enjoy the right to be served.
Hysteresis loss is the iron loss caused by the hysteresis phenomenon in the magnetization process of the iron core. The size of this loss is directly proportional to the area surrounded by the hysteresis loop of the material. The hysteresis loop of silicon steel is narrow, and the hysteresis loss of transformer core made of silicon steel is small, which can greatly reduce its heating degree. Since silicon steel has the above advantages, why not use the whole silicon steel as the iron core and process it into a sheet? rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size. Find extra information on transmartcore.com.
Commonly used transformer cores are generally made of silicon steel sheets. Silicon steel is a kind of steel with silicon (silicon is also called silicon), and its silicon content is 0.8 ~ 4.8%. The reason why silicon steel is used as the iron core of transformer is that silicon steel itself is a magnetic material with strong magnetic conductivity. In the energized coil, it can produce large magnetic induction intensity, which can reduce the volume of transformer.